
Dmitry Vostokov
Software Diagnostics Services

Second Edition

Prerequisites

 Working C or classic C++ knowledge

 Basic assembly language knowledge

© 2023 Software Diagnostics Services

Audience

 Novices

Improve x64 (x86_64, AMD64) and A64 (AArch64, ARM64)

assembly language knowledge

 Experts

Learn the new pattern language approach

© 2023 Software Diagnostics Services

Pattern-Oriented RDR

 Complex crashes and hangs (victimware

analysis)

 Malware analysis

 Studying new products

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/files/Victimware.pdf

Training Goals

 Review fundamentals

 Learn patterns and techniques

© 2023 Software Diagnostics Services

Training Principles

 Talk only about what I can show

 Lots of pictures

 Lots of examples

 Original content and examples

© 2023 Software Diagnostics Services

Course Idea

 Accelerated Linux Core Dump Analysis,

Third Edition (x64 and A64)

 Accelerated Disassembly, Reconstruction

and Reversing, Second Edition, Revised and

Extended (Windows x64)

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book

Part 1: Theory

© 2023 Software Diagnostics Services

Computation

CPU

Data Code

Memory Changes

© 2023 Software Diagnostics Services

Disassembly

Data/Code numbers

Data/Code symbolic

48 8d 05 a1 b4 07 00 lea 0x7b4a1(%rip),%rax # 0x47d004
48 89 05 36 68 0a 00 mov %rax,0xa6836(%rip) # 0x4a83a0 <name>

e0 53 00 91 add x0, sp, #0x14
e0 0f 00 f9 str x0, [sp, #24]

Annotated Disassembly memory analysis pattern

© 2023 Software Diagnostics Services

http://www.dumpanalysis.org/blog/index.php/2011/10/13/crash-dump-analysis-patterns-part-151/

The Problem of Reversing

 Compilation to Machine LanguageM

Language1 LanguageM Language2

 Decompilation

LanguageM ?

© 2023 Software Diagnostics Services

The Solution to Reversing

 Memory LanguageM Semantics

Language1 LanguageM Language2

 Decompilation

Understanding of LanguageM

© 2023 Software Diagnostics Services

The Reversing Tool

RSP

8

10

18

20

28

30

38

40

48

50

RAX

Memory Cell Diagrams

© 2023 Software Diagnostics Services

Idea when reading The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram book

Re(De)construction

 Time dimension: sequence diagrams

 Space dimension: component diagrams

How does it work temporally and structurally?

© 2023 Software Diagnostics Services

ADDR Patterns

 Accelerated

 Disassembly patterns

 De(Re)construction patterns

 Reversing patterns

© 2023 Software Diagnostics Services

ADDR Patterns (II)

 Accelerated

 Disassembly patterns

 Decompilation patterns

 Reconstruction patterns

© 2023 Software Diagnostics Services

ADDR Schemas

 Function Prologue → Function Epilogue

 Call Prologue → Function Call → Call Epilogue

 Potential Functionality → Call Skeleton → Call Path

 Call Parameter → Function Parameter → Local Variable

© 2023 Software Diagnostics Services

ADDR Implementations

ADDR Pattern Catalogue

Linux macOS Windows

x86 x64 ARM

…

© 2023 Software Diagnostics Services

A64

GCC Clang

Pattern Catalogues

 Elementary Software Diagnostics Patterns

 Memory Analysis Patterns

 Trace and Log Analysis Patterns

 Unified Debugging Patterns

 ADDR Patterns

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/elementary-diagnostics-patterns
http://www.patterndiagnostics.com/encyclopedia-crash-dump-analysis-patterns
http://www.patterndiagnostics.com/trace-log-analysis-pattern-reference
https://www.dumpanalysis.org/pattern-oriented-debugging-process

Pattern Orientation

 Pattern-Driven ADDR

 Pattern-Based ADDR

© 2023 Software Diagnostics Services

Part 2: x64 Disassembly

© 2023 Software Diagnostics Services

CPU Registers (x64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-x64.xlsx

 RAX EAX AX {AH, AL}

 ALU: RAX, RDX

 Counter: RCX

 Memory copy: RSI (src), RDI (dst)

 Stack: RSP, RBP

 Next instruction: RIP

 New: R8 – R15, Rx(D|W|L)

© 2023 Software Diagnostics Services

RAX 64-bit EAX 32-bit

Instructions: registers (x64)

 Opcode SRC, DST # default AT&T flavour

 Examples:

mov $0x10, %rax # 0x10 → RAX

mov %rsp, %rbp # RSP → RBP

add $0x10, %r10 # R10 + 0x10 → R10

imul %ecx, %edx # ECX * EDX → EDX

callq *%rdx # RDX already contains

the address of func (&func)

PUSH RIP; &func → RIP

sub $0x30, %rsp # RSP–0x30 → RSP

make a room for local variables

© 2023 Software Diagnostics Services

Memory and Stack Addressing

© 2023 Software Diagnostics Services

RSP →

RSP-0x8 →

RSP-0x18 →

RSP+0x8 →

RSP-0x20 →

RSP-0x10 →

RSP+0x10 →

RSP+0x18 →

RSP+0x20 →

← RBP

← RBP-0x8

← RBP-0x18

← RBP+0x8

← RBP-0x20

← RBP-0x10

← RBP+0x10

← RBP+0x18

← RBP+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Instructions: memory load (x64)

 Opcode Offset(SRC), DST

 Opcode DST

 Examples:

mov 0x10(%rsp), %rax # value at address RSP+0x10 → RAX

mov -0x10(%rbp), %rcx # value at address RBP-0x10 → RCX

add (%rax), %rdx # RDX + value at address RAX → RDX

pop %rdi # value at address RSP → RDI

RSP + 8 → RSP

lea 0x20(%rbp), %r8 # address RBP+0x20 → R8

© 2023 Software Diagnostics Services

Instructions: memory store (x64)

 Opcode SRC, Offset(DST)

 Opcode SRC|DST

 Examples:

mov %rcx, -0x20(%rbp) # RCX → value at address RBP-0x20

addl $1, (%rax) # 1 + 32-bit value at address RAX →

32-bit value at address RAX

push %rsi # RSP - 8 → RSP

RSI → value at address RSP

inc (%rcx) # 1 + value at address RCX →

value at address RCX

© 2023 Software Diagnostics Services

Instructions: flow (x64)

 Opcode DST

 Examples:

jmp 0x10493fc1c # 0x10493fc1c → RIP

(goto 0x10493fc1c)

call 0x10493ff74 # RSP – 8 → RSP

0x10493fc14: # 0x10493fc14 → value at address RSP

0x10493ff74 → RIP

(goto 0x10493ff74)

© 2023 Software Diagnostics Services

Function Call and Prolog (x64)

© 2023 Software Diagnostics Services

void proc(int p1, long p2);
mov $0x1, %edi
mov $0x2, %rsi
call proc
addr:

void proc2();
void proc(int p1, long p2) {
long local = 0;
proc2();
}
proc:
push %rbp
mov %rsp, %rbp
sub $0x8, %rsp
mov $0, -0x8(%rbp)
call proc2
adr2:
...

adr2

0

RBP

addrRSP →

RSP-0x8 →

RSP →

RSP+0x8 →

RSP-0x20 →

RSP-0x10 →

RSP+0x10 →

RSP+0x18 →

RSP+0x20 →

← RBP-0x8

← RBP

← RBP-0x20

← RBP

← RBP-0x28

← RBP-0x8

← RBP+0x8

← RBP+0x10

← RBP+0x18

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Function Epilog and Return (x64)

© 2023 Software Diagnostics Services

void proc2();
void proc(int p1, long p2) {
long local = 0;
proc2();
}
proc:
push %rbp
mov %rsp, %rbp
sub $0x8, %rsp
mov $0, -0x8(%rbp)
call proc2
adr2:
...
leaveq # GCC
retq

adr2:
...
add $0x8, %rsp # Clang
pop $rbp
retq

adr2

0

RBP

addrRSP+0x10 →

RSP+0x8 →

RSP-0x8 →

RSP →

RSP-0x10 →

RSP →

RSP+0x20 →

RSP+0x28 →

RSP+0x30 →

← RBP+0x8

← RBP

← RBP-0x18

← RBP

← RBP-0x20

← RBP-0x8

← RBP+0x18

← RBP+0x20

← RBP+0x28

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Stack Trace Reconstruction (x64)

© 2023 Software Diagnostics Services

RBP

foo

RBP

bar

RBP

main

return address foo + 200

← RBP

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

RIP == func + 16

Part 3: A64 Disassembly

© 2023 Software Diagnostics Services

CPU Registers (A64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-ARM64.xlsx

 X0 – X28, W0 – W28

 Stack: SP, X29 (FP)

 Next instruction: PC

 Link register: X30 (LR)

 Zero register: XZR, WZR

 64-bit floating point registers D0 – D31

 128-bit Q0 – Q31
© 2023 Software Diagnostics Services

X 64-bit W 32-bit

Instructions: registers (A64)

 Opcode DST, SRC, SRC2

 Examples:

mov x0, #16 // X0 ← 16 (0x10)

mov x29, sp // X29 ← SP

add x1, x2, #16 // X1 ← X2+16 (0x10)

mul x1, x2, x3 // X1 ← X2*X3

blr x8 // X8 already contains

// the address of func (&func)

// LR ← PC+4; PC ← &func

sub sp, sp, #48 // SP ← SP-48 (–0x30)

// make a room for local variables

© 2023 Software Diagnostics Services

Memory and Stack Addressing

© 2023 Software Diagnostics Services

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP-0x20 →

SP-0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29-0x20

← X29-0x10

← X29+0x10

← X29+0x18

← X29+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Instructions: memory load (A64)

 Opcode DST, DST2, [SRC, Offset]

 Opcode DST, DST2, [SRC], Offset // Postincrement

 Examples:

ldr x0, [sp] // X0 ← value at address SP+0

ldr x0, [x29, #-8] // X0 ← value at address X29-0x8

ldp x29, x30, [sp, #32] // X29 ← value at address SP+32 (0x20)

// X30 ← value at address SP+40 (0x28)

ldp x29, x30, [sp], #16 // X29 ← value at address SP+0

// X30 ← value at address SP+8

// SP ← SP+16 (0x10)

© 2023 Software Diagnostics Services

Instructions: memory store (A64)

 Opcode SRC, SRC2, [DST, Offset]

 Opcode SRC, SRC2, [DST, Offset]! // Preincrement

 Examples:

str x0, [sp, #16] // x0 → value at address SP+16 (0x10)

str x0, [x29, #-8] // x0 → value at address X29-8

stp x29, x30, [sp, #32] // x29 → value at address SP+32 (0x20)

// x30 → value at address SP+40 (0x28)

stp x29, x30, [sp, #-16]! // SP ← SP-16 (-0x10)

// x29 → set value at address SP

// x30 → set value at address SP+8

© 2023 Software Diagnostics Services

Instructions: flow (A64)

 Opcode DST, SRC

 Examples:

adrp x0, 0x420000 // x0 ← 0x420000

b 0x10493fc1c // PC ← 0x10493fc1c

// (goto 0x10493fc1c)

br x17 // PC ← the value of X17

0x10493fc14: // PC == 0x10493fc14

bl 0x10493ff74 // LR ← PC+4 (0x10493fc18)

// PC ← 0x10493ff74

// (goto 0x10493ff74)

© 2023 Software Diagnostics Services

Function Call and Prolog (A64)

© 2023 Software Diagnostics Services

X29

X30

0

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
stp x29, x30, [sp, #-32]!
mov x29, sp
str zxr, [x29, #16]
bl proc2
adr2:
...

GCC

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29

← X29+16

← X29+0x10

← X29+0x18

← X29+0x20

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

adr2X30

Function Epilog and Return (A64)

© 2023 Software Diagnostics Services

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
stp x29, x30, [sp, #-32]!
mov x29, sp
str zxr, [x29, #16]
bl proc2
adr2:
...
ldp x29, x30, [sp], #32
ret

GCC

X29

X30

0

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

← X29

← X29+0x18

← X29+0x8

← X29+0x28

← X29

← X29+0x10

← X29+0x30

← X29+0x38

← X29+0x40

SP →

SP+0x18 →

SP+0x8 →

SP+0x28 →

SP →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

addrX30

Function Call and Prolog (A64)

© 2022 Software Diagnostics Services

0

X29

X30

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x8

← X29+0x8

← X29-0x20

← X29

← X29+0x10

← X29+0x18

← X29+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
sub sp, sp, #0x20
stp x29, x30, [sp, #16]
add x29, sp, #0x10
str zxr, [x29, #-8]
bl proc2
adr2:
...

Clang
adr2X30

Function Epilog and Return (A64)

© 2023 Software Diagnostics Services

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
sub sp, sp, #0x20
stp x29, x30, [sp, #16]
add x29, sp, #0x10
str zxr, [x29, #-8]
bl proc2
adr2:
...
ldp x29, x30, [sp, #16]
add sp, sp, #0x20
ret

Clang

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

0

X29

X30

SP →
→

SP+0x18 →

SP+0x8 →

SP+0x28 →

SP →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

← X29

← X29+0x8

← X29-0x8

← X29+0x18

← X29-0x10

← X29

← X29+0x20

← X29+0x28

← X29+0x30

addrX30

Stack Trace Reconstruction (A64)

© 2023 Software Diagnostics Services

X29

X30

X29

X30

X29

X30

return address foo + 200

← X29

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

PC == func + 16,
LR == return address foo + 200

Part 4: Practice Exercises

© 2023 Software Diagnostics Services

Links

 Memory dumps:

Download links are in the exercise R0.

 Exercise Transcripts:

Included in this book.

© 2023 Software Diagnostics Services

Exercise R0

 Goal: Install GDB and check if GDB loads a core dump correctly

 \ADDR-Linux\Exercise-R0-x64-GDB.pdf

 \ADDR-Linux\Exercise-R0-ARM64-GDB.pdf

© 2023 Software Diagnostics Services

Exercise R1

 Goal: Review x64 and AArch64 assembly fundamentals; learn how

to reconstruct stack trace manually

 ADDR Patterns: Universal Pointer, Symbolic Pointer S2,

Interpreted Pointer S3, Context Pyramid

 Memory Cell Diagrams: Register, Pointer, Stack Frame

 \ADDR-Linux\Exercise-R1-x64-GDB.pdf

 \ADDR-Linux\MCD-R1-x64.xlsx

 \ADDR-Linux\Exercise-R1-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R1-ARM64.xlsx

© 2023 Software Diagnostics Services

Stack Reconstruction (x64)

1. Top frame from the current RIP1, RSP1 (info reg)

2. Disassemble around the current RIPn (disass RIPn)*

3. Find out the beginning of the function prologue*

4. Check RSPn usage (sub, push) and count offsets

5. Get RIPn+1 for the next frame (x/a RSPn + offset)

6. Get RSPn+1 for the next frame (RSPn + offset + 8)

7. ++n

8. goto #2

* If symbols are available, disassemble the function corresponding to RIPn (disass name)

If symbols are not available, disassemble backwards until the function prologue is found

© 2023 Software Diagnostics Services

Stack Reconstruction (A64)

1. Top frame from the current PC1, X291 (info reg)

2. Get PCn+1 for the next frame (x/a X29n + 8)

3. Get X29n+1 for the next frame (x/gx X29n)

4. ++n

5. goto #2

© 2023 Software Diagnostics Services

ADDR: Universal Pointer

 A memory cell value interpreted as a pointer to memory cells

 A memory address that was not specifically designed as a pointer

© 2023 Software Diagnostics Services

ADDR: Symbolic Pointer, S2

 A memory cell value associated with a symbolic value from a

symbol file or a binary file (exported symbol)

© 2023 Software Diagnostics Services

ADDR: Interpreted Pointer, S3

 Interpretation of a memory cell pointer value and its symbol

 Implemented via a typed structure or debugger (extension)

command

© 2023 Software Diagnostics Services

ADDR: Context Pyramid

 When we move down stack trace frames, we can recover less and

less contextual memory information due to register and memory

overwrites

© 2023 Software Diagnostics Services

Exercise R2

 Goal: Learn how to map source code to disassembly

 ADDR Patterns: Function Skeleton, Function Call, Call Path,

Local Variable, Static Variable, Pointer Dereference

 Memory Cell Diagrams: Pointer Dereference

 \ADDR-Linux\Exercise-R2-x64-GDB.pdf

 \ADDR-Linux\MCD-R2-x64.xlsx

 \ADDR-Linux\Exercise-R2-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R2-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Function Skeleton

 Function calls (or branch and links) inside a function body

 Splits a function body into regions

 Helps in understanding a function

© 2023 Software Diagnostics Services

ADDR: Function Call

 Simply the call of (or branch and link to) a function

 Call (bl, blr) or unconditional jmp (b) instructions

© 2023 Software Diagnostics Services

ADDR: Call Path

 Following a sequence of Function Calls

 Example: call procA, call procC (or bl procA, bl procC)

… …
call procA bl procA
call procB bl procB
… …

procA: procA:
… …
call procC bl procC
… …

© 2023 Software Diagnostics Services

ADDR: Local Variable

 A variable is a memory cell with an address

 A variable with stack region storage

 Usually, a local variable memory cell is referenced by stack pointer

or frame pointer registers

© 2023 Software Diagnostics Services

ADDR: Static Variable

 A variable is a memory cell with an address

 A variable with non-stack and non-register storage

 Usually, there is a direct memory reference

© 2023 Software Diagnostics Services

ADDR: Pointer Dereference

 A pointer is a memory cell that contains the address of (references)

another memory cell

 Dereference is a sequence of instructions to get a value from a

memory cell referenced by another memory cell

© 2023 Software Diagnostics Services

Exercise R3

 Goal: Learn a function structure and associated memory

operations

 ADDR Patterns: Function Prologue, Function Epilogue,

Variable Initialization, Memory Copy

 Memory Cell Diagrams: Function Prologue, Function Epilogue

 \ADDR-Linux\Exercise-R3-x64-GDB.pdf

 \ADDR-Linux\MCD-R3-x64.xlsx

 \ADDR-Linux\Exercise-R3-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R3-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Function Prologue

 The code emitted by a compiler that is necessary to set up the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: allocating memory on the stack for all local variables

© 2023 Software Diagnostics Services

ADDR: Function Epilogue

 The code emitted by a compiler that is necessary to finish the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: deallocating memory on the stack for all local variables

© 2023 Software Diagnostics Services

ADDR: Variable Initialization

 Code to initialize an individual local variable

 Not part of a function prologue

© 2023 Software Diagnostics Services

ADDR: Memory Copy

 Repeated memory move instructions

© 2023 Software Diagnostics Services

Exercise R4

 Goal: Learn how to recognize call and function parameters and

track their data flow

 ADDR Patterns: Call Prologue, Call Parameter, Call Epilogue,

Call Result, Control Path, Function Parameter

 \ADDR-Linux\Exercise-R4-x64-GDB.pdf

 \ADDR-Linux\Exercise-R4-ARM64-GDB.pdf

© 2023 Software Diagnostics Services

ADDR: Call Prologue

 The code emitted by a compiler that is necessary to set up a

function call (or branch and link) and its parameters

© 2023 Software Diagnostics Services

ADDR: Call Parameter

 Data passed to a function before a function call (or branch and link)

© 2023 Software Diagnostics Services

ADDR: Call Epilogue

 The code emitted by a compiler to finish a function call (or branch

and link) and processing of its return results

© 2023 Software Diagnostics Services

ADDR: Call Result

 Data returned by a function

© 2023 Software Diagnostics Services

ADDR: Control Path

 A possible execution path inside a function consisting of direct and

conditional jumps or branches

© 2023 Software Diagnostics Services

ADDR: Function Parameter

 Data passed to a function inside a function (on the receiver side)

 Such a parameter can be translated to a local variable if passed by

stack or copied to a stack location

© 2023 Software Diagnostics Services

Exercise R5

 Goal: Master memory cell diagrams as an aid to understanding

complex disassembly logic

 ADDR Patterns: Last Call, Loop, Memory Copy

 Memory Cell Diagrams: Memory Copy

 \ADDR-Linux\Exercise-R5-x64-GDB.pdf

 \ADDR-Linux\MCD-R5-x64.xlsx

 \ADDR-Linux\Exercise-R5-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R5-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Last Call

 A function possibly called (or branched and linked to) before the

current instruction pointer

© 2023 Software Diagnostics Services

ADDR: Loop

 An unconditional jump or branch to the previous code address

© 2023 Software Diagnostics Services

Exercise R6

 Goal: Learn how to map code to execution residue and reconstruct

past behaviour; recognise previously introduced ADDR patterns in

the context of compiled classic C++ code

 ADDR Patterns: Virtual Call

 Memory Cell Diagrams: Virtual Call

 \ADDR-Linux\Exercise-R6-x64-GDB.pdf

 \ADDR-Linux\MCD-R6-x64.xlsx

 \ADDR-Linux\Exercise-R6-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R6-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Virtual Call

 A call (or branch and link) through virtual function table structure field

 Usually involves a double Pointer Dereference

© 2023 Software Diagnostics Services

Additional ADDR Patterns

© 2023 Software Diagnostics Services

ADDR: Potential Functionality

 A list of function symbols, for example, a list of imported functions, a

list of callbacks, a structure or table with function pointers

© 2023 Software Diagnostics Services

ADDR: Structure Field

 An offset to the structure memory address

© 2023 Software Diagnostics Services

ADDR: Separator Frames

 Frames that divide a stack trace into separate analysis units

© 2023 Software Diagnostics Services

Live Debugging Techniques

 ADDR Patterns: Component Dependencies, API Trace, Fiber

Bundle (trace analysis pattern)

 Some dependencies can be learnt from crash dump stack traces

 Debugging.TV / YouTube

 Live debugging training: Accelerated Linux Debugging4

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
http://www.debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.patterndiagnostics.com/accelerated-linux-debugging-4d

Memory Analysis Patterns

Regular Data

Injected Symbols

Execution Residue

Rough Stack Trace

Annotated Disassembly

Historical Information

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2015/12/19/crash-dump-analysis-patterns-part-60-linux/

Resources
 DumpAnalysis.org / SoftwareDiagnostics.Institute

 PatternDiagnostics.com

 Debugging.TV / YouTube.com/DebuggingTV / YouTube.com/PatternDiagnostics

 A64 Instruction Set Architecture

 A64 Base Instructions

 GDB Pocket Reference

 Accelerated Linux Core Dump Analysis, Third Edition

 Debugging, Disassembly & Reversing in Linux for x64 Architecture

 Foundations of Linux Debugging, Disassembling, and Reversing

 Foundations of ARM64 Linux Debugging, Disassembling, and Reversing

 Memory Dump Analysis Anthology (Diagnomicon) articles in volumes 1, 7, 9A cover GDB

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/
http://softwarediagnostics.institute/
https://www.patterndiagnostics.com/
http://debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.youtube.com/PatternDiagnostics
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions?lang=en
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.educative.io/courses/debugging-disassembly-reversing-in-linux-x64-architecture
https://www.patterndiagnostics.com/practical-foundations-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-arm64-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/mdaa-volumes

Q&A

Please send your feedback using the contact

form on PatternDiagnostics.com

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/

Thank you for attendance!

© 2023 Software Diagnostics Services

	Slide 1: Accelerated
	Slide 2: Prerequisites
	Slide 3: Audience
	Slide 4: Pattern-Oriented RDR
	Slide 5: Training Goals
	Slide 6: Training Principles
	Slide 7: Course Idea
	Slide 8: Part 1: Theory
	Slide 9: Computation
	Slide 10: Disassembly
	Slide 11: The Problem of Reversing
	Slide 12: The Solution to Reversing
	Slide 13: The Reversing Tool
	Slide 14: Re(De)construction
	Slide 15: ADDR Patterns
	Slide 16: ADDR Patterns (II)
	Slide 17: ADDR Schemas
	Slide 18: ADDR Implementations
	Slide 19: Pattern Catalogues
	Slide 20: Pattern Orientation
	Slide 21: Part 2: x64 Disassembly
	Slide 22: CPU Registers (x64)
	Slide 23: Instructions: registers (x64)
	Slide 24: Memory and Stack Addressing
	Slide 25: Instructions: memory load (x64)
	Slide 26: Instructions: memory store (x64)
	Slide 27: Instructions: flow (x64)
	Slide 28: Function Call and Prolog (x64)
	Slide 29: Function Epilog and Return (x64)
	Slide 30: Stack Trace Reconstruction (x64)
	Slide 31: Part 3: A64 Disassembly
	Slide 32: CPU Registers (A64)
	Slide 33: Instructions: registers (A64)
	Slide 34: Memory and Stack Addressing
	Slide 35: Instructions: memory load (A64)
	Slide 36: Instructions: memory store (A64)
	Slide 37: Instructions: flow (A64)
	Slide 38: Function Call and Prolog (A64)
	Slide 39: Function Epilog and Return (A64)
	Slide 40: Function Call and Prolog (A64)
	Slide 41: Function Epilog and Return (A64)
	Slide 42: Stack Trace Reconstruction (A64)
	Slide 43: Part 4: Practice Exercises
	Slide 44: Links
	Slide 45: Exercise R0
	Slide 46: Exercise R1
	Slide 47: Stack Reconstruction (x64)
	Slide 48: Stack Reconstruction (A64)
	Slide 49: ADDR: Universal Pointer
	Slide 50: ADDR: Symbolic Pointer, S2
	Slide 51: ADDR: Interpreted Pointer, S3
	Slide 52: ADDR: Context Pyramid
	Slide 53: Exercise R2
	Slide 54: ADDR: Function Skeleton
	Slide 55: ADDR: Function Call
	Slide 56: ADDR: Call Path
	Slide 57: ADDR: Local Variable
	Slide 58: ADDR: Static Variable
	Slide 59: ADDR: Pointer Dereference
	Slide 60: Exercise R3
	Slide 61: ADDR: Function Prologue
	Slide 62: ADDR: Function Epilogue
	Slide 63: ADDR: Variable Initialization
	Slide 64: ADDR: Memory Copy
	Slide 65: Exercise R4
	Slide 66: ADDR: Call Prologue
	Slide 67: ADDR: Call Parameter
	Slide 68: ADDR: Call Epilogue
	Slide 69: ADDR: Call Result
	Slide 70: ADDR: Control Path
	Slide 71: ADDR: Function Parameter
	Slide 72: Exercise R5
	Slide 73: ADDR: Last Call
	Slide 74: ADDR: Loop
	Slide 75: Exercise R6
	Slide 76: ADDR: Virtual Call
	Slide 77: Additional ADDR Patterns
	Slide 78: ADDR: Potential Functionality
	Slide 79: ADDR: Structure Field
	Slide 80: ADDR: Separator Frames
	Slide 81: Live Debugging Techniques
	Slide 82: Memory Analysis Patterns
	Slide 83: Resources
	Slide 84: Q&A
	Slide 85

