
Dmitry Vostokov
Software Diagnostics Services

Second Edition

Prerequisites

 Working C or classic C++ knowledge

 Basic assembly language knowledge

© 2023 Software Diagnostics Services

Audience

 Novices

Improve x64 (x86_64, AMD64) and A64 (AArch64, ARM64)

assembly language knowledge

 Experts

Learn the new pattern language approach

© 2023 Software Diagnostics Services

Pattern-Oriented RDR

 Complex crashes and hangs (victimware

analysis)

 Malware analysis

 Studying new products

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/files/Victimware.pdf

Training Goals

 Review fundamentals

 Learn patterns and techniques

© 2023 Software Diagnostics Services

Training Principles

 Talk only about what I can show

 Lots of pictures

 Lots of examples

 Original content and examples

© 2023 Software Diagnostics Services

Course Idea

 Accelerated Linux Core Dump Analysis,

Third Edition (x64 and A64)

 Accelerated Disassembly, Reconstruction

and Reversing, Second Edition, Revised and

Extended (Windows x64)

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book

Part 1: Theory

© 2023 Software Diagnostics Services

Computation

CPU

Data Code

Memory Changes

© 2023 Software Diagnostics Services

Disassembly

Data/Code numbers

Data/Code symbolic

48 8d 05 a1 b4 07 00 lea 0x7b4a1(%rip),%rax # 0x47d004
48 89 05 36 68 0a 00 mov %rax,0xa6836(%rip) # 0x4a83a0 <name>

e0 53 00 91 add x0, sp, #0x14
e0 0f 00 f9 str x0, [sp, #24]

Annotated Disassembly memory analysis pattern

© 2023 Software Diagnostics Services

http://www.dumpanalysis.org/blog/index.php/2011/10/13/crash-dump-analysis-patterns-part-151/

The Problem of Reversing

 Compilation to Machine LanguageM

Language1 LanguageM Language2

 Decompilation

LanguageM ?

© 2023 Software Diagnostics Services

The Solution to Reversing

 Memory LanguageM Semantics

Language1 LanguageM Language2

 Decompilation

Understanding of LanguageM

© 2023 Software Diagnostics Services

The Reversing Tool

RSP

8

10

18

20

28

30

38

40

48

50

RAX

Memory Cell Diagrams

© 2023 Software Diagnostics Services

Idea when reading The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram book

Re(De)construction

 Time dimension: sequence diagrams

 Space dimension: component diagrams

How does it work temporally and structurally?

© 2023 Software Diagnostics Services

ADDR Patterns

 Accelerated

 Disassembly patterns

 De(Re)construction patterns

 Reversing patterns

© 2023 Software Diagnostics Services

ADDR Patterns (II)

 Accelerated

 Disassembly patterns

 Decompilation patterns

 Reconstruction patterns

© 2023 Software Diagnostics Services

ADDR Schemas

 Function Prologue → Function Epilogue

 Call Prologue → Function Call → Call Epilogue

 Potential Functionality → Call Skeleton → Call Path

 Call Parameter → Function Parameter → Local Variable

© 2023 Software Diagnostics Services

ADDR Implementations

ADDR Pattern Catalogue

Linux macOS Windows

x86 x64 ARM

…

© 2023 Software Diagnostics Services

A64

GCC Clang

Pattern Catalogues

 Elementary Software Diagnostics Patterns

 Memory Analysis Patterns

 Trace and Log Analysis Patterns

 Unified Debugging Patterns

 ADDR Patterns

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/elementary-diagnostics-patterns
http://www.patterndiagnostics.com/encyclopedia-crash-dump-analysis-patterns
http://www.patterndiagnostics.com/trace-log-analysis-pattern-reference
https://www.dumpanalysis.org/pattern-oriented-debugging-process

Pattern Orientation

 Pattern-Driven ADDR

 Pattern-Based ADDR

© 2023 Software Diagnostics Services

Part 2: x64 Disassembly

© 2023 Software Diagnostics Services

CPU Registers (x64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-x64.xlsx

 RAX  EAX  AX  {AH, AL}

 ALU: RAX, RDX

 Counter: RCX

 Memory copy: RSI (src), RDI (dst)

 Stack: RSP, RBP

 Next instruction: RIP

 New: R8 – R15, Rx(D|W|L)

© 2023 Software Diagnostics Services

RAX 64-bit EAX 32-bit

Instructions: registers (x64)

 Opcode SRC, DST # default AT&T flavour

 Examples:

mov $0x10, %rax # 0x10 → RAX

mov %rsp, %rbp # RSP → RBP

add $0x10, %r10 # R10 + 0x10 → R10

imul %ecx, %edx # ECX * EDX → EDX

callq *%rdx # RDX already contains

the address of func (&func)

PUSH RIP; &func → RIP

sub $0x30, %rsp # RSP–0x30 → RSP

make a room for local variables

© 2023 Software Diagnostics Services

Memory and Stack Addressing

© 2023 Software Diagnostics Services

RSP →

RSP-0x8 →

RSP-0x18 →

RSP+0x8 →

RSP-0x20 →

RSP-0x10 →

RSP+0x10 →

RSP+0x18 →

RSP+0x20 →

← RBP

← RBP-0x8

← RBP-0x18

← RBP+0x8

← RBP-0x20

← RBP-0x10

← RBP+0x10

← RBP+0x18

← RBP+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Instructions: memory load (x64)

 Opcode Offset(SRC), DST

 Opcode DST

 Examples:

mov 0x10(%rsp), %rax # value at address RSP+0x10 → RAX

mov -0x10(%rbp), %rcx # value at address RBP-0x10 → RCX

add (%rax), %rdx # RDX + value at address RAX → RDX

pop %rdi # value at address RSP → RDI

RSP + 8 → RSP

lea 0x20(%rbp), %r8 # address RBP+0x20 → R8

© 2023 Software Diagnostics Services

Instructions: memory store (x64)

 Opcode SRC, Offset(DST)

 Opcode SRC|DST

 Examples:

mov %rcx, -0x20(%rbp) # RCX → value at address RBP-0x20

addl $1, (%rax) # 1 + 32-bit value at address RAX →

32-bit value at address RAX

push %rsi # RSP - 8 → RSP

RSI → value at address RSP

inc (%rcx) # 1 + value at address RCX →

value at address RCX

© 2023 Software Diagnostics Services

Instructions: flow (x64)

 Opcode DST

 Examples:

jmp 0x10493fc1c # 0x10493fc1c → RIP

(goto 0x10493fc1c)

call 0x10493ff74 # RSP – 8 → RSP

0x10493fc14: # 0x10493fc14 → value at address RSP

0x10493ff74 → RIP

(goto 0x10493ff74)

© 2023 Software Diagnostics Services

Function Call and Prolog (x64)

© 2023 Software Diagnostics Services

void proc(int p1, long p2);
mov $0x1, %edi
mov $0x2, %rsi
call proc
addr:

void proc2();
void proc(int p1, long p2) {
long local = 0;
proc2();
}
proc:
push %rbp
mov %rsp, %rbp
sub $0x8, %rsp
mov $0, -0x8(%rbp)
call proc2
adr2:
...

adr2

0

RBP

addrRSP →

RSP-0x8 →

RSP →

RSP+0x8 →

RSP-0x20 →

RSP-0x10 →

RSP+0x10 →

RSP+0x18 →

RSP+0x20 →

← RBP-0x8

← RBP

← RBP-0x20

← RBP

← RBP-0x28

← RBP-0x8

← RBP+0x8

← RBP+0x10

← RBP+0x18

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Function Epilog and Return (x64)

© 2023 Software Diagnostics Services

void proc2();
void proc(int p1, long p2) {
long local = 0;
proc2();
}
proc:
push %rbp
mov %rsp, %rbp
sub $0x8, %rsp
mov $0, -0x8(%rbp)
call proc2
adr2:
...
leaveq # GCC
retq

adr2:
...
add $0x8, %rsp # Clang
pop $rbp
retq

adr2

0

RBP

addrRSP+0x10 →

RSP+0x8 →

RSP-0x8 →

RSP →

RSP-0x10 →

RSP →

RSP+0x20 →

RSP+0x28 →

RSP+0x30 →

← RBP+0x8

← RBP

← RBP-0x18

← RBP

← RBP-0x20

← RBP-0x8

← RBP+0x18

← RBP+0x20

← RBP+0x28

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Stack Trace Reconstruction (x64)

© 2023 Software Diagnostics Services

RBP

foo

RBP

bar

RBP

main

return address foo + 200

← RBP

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

RIP == func + 16

Part 3: A64 Disassembly

© 2023 Software Diagnostics Services

CPU Registers (A64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-ARM64.xlsx

 X0 – X28, W0 – W28

 Stack: SP, X29 (FP)

 Next instruction: PC

 Link register: X30 (LR)

 Zero register: XZR, WZR

 64-bit floating point registers D0 – D31

 128-bit Q0 – Q31
© 2023 Software Diagnostics Services

X 64-bit W 32-bit

Instructions: registers (A64)

 Opcode DST, SRC, SRC2

 Examples:

mov x0, #16 // X0 ← 16 (0x10)

mov x29, sp // X29 ← SP

add x1, x2, #16 // X1 ← X2+16 (0x10)

mul x1, x2, x3 // X1 ← X2*X3

blr x8 // X8 already contains

// the address of func (&func)

// LR ← PC+4; PC ← &func

sub sp, sp, #48 // SP ← SP-48 (–0x30)

// make a room for local variables

© 2023 Software Diagnostics Services

Memory and Stack Addressing

© 2023 Software Diagnostics Services

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP-0x20 →

SP-0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29-0x20

← X29-0x10

← X29+0x10

← X29+0x18

← X29+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

Instructions: memory load (A64)

 Opcode DST, DST2, [SRC, Offset]

 Opcode DST, DST2, [SRC], Offset // Postincrement

 Examples:

ldr x0, [sp] // X0 ← value at address SP+0

ldr x0, [x29, #-8] // X0 ← value at address X29-0x8

ldp x29, x30, [sp, #32] // X29 ← value at address SP+32 (0x20)

// X30 ← value at address SP+40 (0x28)

ldp x29, x30, [sp], #16 // X29 ← value at address SP+0

// X30 ← value at address SP+8

// SP ← SP+16 (0x10)

© 2023 Software Diagnostics Services

Instructions: memory store (A64)

 Opcode SRC, SRC2, [DST, Offset]

 Opcode SRC, SRC2, [DST, Offset]! // Preincrement

 Examples:

str x0, [sp, #16] // x0 → value at address SP+16 (0x10)

str x0, [x29, #-8] // x0 → value at address X29-8

stp x29, x30, [sp, #32] // x29 → value at address SP+32 (0x20)

// x30 → value at address SP+40 (0x28)

stp x29, x30, [sp, #-16]! // SP ← SP-16 (-0x10)

// x29 → set value at address SP

// x30 → set value at address SP+8

© 2023 Software Diagnostics Services

Instructions: flow (A64)

 Opcode DST, SRC

 Examples:

adrp x0, 0x420000 // x0 ← 0x420000

b 0x10493fc1c // PC ← 0x10493fc1c

// (goto 0x10493fc1c)

br x17 // PC ← the value of X17

0x10493fc14: // PC == 0x10493fc14

bl 0x10493ff74 // LR ← PC+4 (0x10493fc18)

// PC ← 0x10493ff74

// (goto 0x10493ff74)

© 2023 Software Diagnostics Services

Function Call and Prolog (A64)

© 2023 Software Diagnostics Services

X29

X30

0

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
stp x29, x30, [sp, #-32]!
mov x29, sp
str zxr, [x29, #16]
bl proc2
adr2:
...

GCC

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29

← X29+16

← X29+0x10

← X29+0x18

← X29+0x20

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

adr2X30

Function Epilog and Return (A64)

© 2023 Software Diagnostics Services

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
stp x29, x30, [sp, #-32]!
mov x29, sp
str zxr, [x29, #16]
bl proc2
adr2:
...
ldp x29, x30, [sp], #32
ret

GCC

X29

X30

0

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

← X29

← X29+0x18

← X29+0x8

← X29+0x28

← X29

← X29+0x10

← X29+0x30

← X29+0x38

← X29+0x40

SP →

SP+0x18 →

SP+0x8 →

SP+0x28 →

SP →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

addrX30

Function Call and Prolog (A64)

© 2022 Software Diagnostics Services

0

X29

X30

SP →

SP-0x8 →

SP-0x18 →

SP+0x8 →

SP →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x8

← X29+0x8

← X29-0x20

← X29

← X29+0x10

← X29+0x18

← X29+0x20

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
sub sp, sp, #0x20
stp x29, x30, [sp, #16]
add x29, sp, #0x10
str zxr, [x29, #-8]
bl proc2
adr2:
...

Clang
adr2X30

Function Epilog and Return (A64)

© 2023 Software Diagnostics Services

// void proc(int p1, long p2);
mov w0, #0x1
mov x1, #0x2
bl proc
addr:

// void proc2();
// void proc(int p1, long p2) {
// long local = 0;
// proc2();
// }
proc:
sub sp, sp, #0x20
stp x29, x30, [sp, #16]
add x29, sp, #0x10
str zxr, [x29, #-8]
bl proc2
adr2:
...
ldp x29, x30, [sp, #16]
add sp, sp, #0x20
ret

Clang

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

0

X29

X30

SP →
→

SP+0x18 →

SP+0x8 →

SP+0x28 →

SP →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

← X29

← X29+0x8

← X29-0x8

← X29+0x18

← X29-0x10

← X29

← X29+0x20

← X29+0x28

← X29+0x30

addrX30

Stack Trace Reconstruction (A64)

© 2023 Software Diagnostics Services

X29

X30

X29

X30

X29

X30

return address foo + 200

← X29

S
t
a
c
k

g
r
o
w
s

Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

PC == func + 16,
LR == return address foo + 200

Part 4: Practice Exercises

© 2023 Software Diagnostics Services

Links

 Memory dumps:

Download links are in the exercise R0.

 Exercise Transcripts:

Included in this book.

© 2023 Software Diagnostics Services

Exercise R0

 Goal: Install GDB and check if GDB loads a core dump correctly

 \ADDR-Linux\Exercise-R0-x64-GDB.pdf

 \ADDR-Linux\Exercise-R0-ARM64-GDB.pdf

© 2023 Software Diagnostics Services

Exercise R1

 Goal: Review x64 and AArch64 assembly fundamentals; learn how

to reconstruct stack trace manually

 ADDR Patterns: Universal Pointer, Symbolic Pointer S2,

Interpreted Pointer S3, Context Pyramid

 Memory Cell Diagrams: Register, Pointer, Stack Frame

 \ADDR-Linux\Exercise-R1-x64-GDB.pdf

 \ADDR-Linux\MCD-R1-x64.xlsx

 \ADDR-Linux\Exercise-R1-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R1-ARM64.xlsx

© 2023 Software Diagnostics Services

Stack Reconstruction (x64)

1. Top frame from the current RIP1, RSP1 (info reg)

2. Disassemble around the current RIPn (disass RIPn)*

3. Find out the beginning of the function prologue*

4. Check RSPn usage (sub, push) and count offsets

5. Get RIPn+1 for the next frame (x/a RSPn + offset)

6. Get RSPn+1 for the next frame (RSPn + offset + 8)

7. ++n

8. goto #2

* If symbols are available, disassemble the function corresponding to RIPn (disass name)

If symbols are not available, disassemble backwards until the function prologue is found

© 2023 Software Diagnostics Services

Stack Reconstruction (A64)

1. Top frame from the current PC1, X291 (info reg)

2. Get PCn+1 for the next frame (x/a X29n + 8)

3. Get X29n+1 for the next frame (x/gx X29n)

4. ++n

5. goto #2

© 2023 Software Diagnostics Services

ADDR: Universal Pointer

 A memory cell value interpreted as a pointer to memory cells

 A memory address that was not specifically designed as a pointer

© 2023 Software Diagnostics Services

ADDR: Symbolic Pointer, S2

 A memory cell value associated with a symbolic value from a

symbol file or a binary file (exported symbol)

© 2023 Software Diagnostics Services

ADDR: Interpreted Pointer, S3

 Interpretation of a memory cell pointer value and its symbol

 Implemented via a typed structure or debugger (extension)

command

© 2023 Software Diagnostics Services

ADDR: Context Pyramid

 When we move down stack trace frames, we can recover less and

less contextual memory information due to register and memory

overwrites

© 2023 Software Diagnostics Services

Exercise R2

 Goal: Learn how to map source code to disassembly

 ADDR Patterns: Function Skeleton, Function Call, Call Path,

Local Variable, Static Variable, Pointer Dereference

 Memory Cell Diagrams: Pointer Dereference

 \ADDR-Linux\Exercise-R2-x64-GDB.pdf

 \ADDR-Linux\MCD-R2-x64.xlsx

 \ADDR-Linux\Exercise-R2-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R2-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Function Skeleton

 Function calls (or branch and links) inside a function body

 Splits a function body into regions

 Helps in understanding a function

© 2023 Software Diagnostics Services

ADDR: Function Call

 Simply the call of (or branch and link to) a function

 Call (bl, blr) or unconditional jmp (b) instructions

© 2023 Software Diagnostics Services

ADDR: Call Path

 Following a sequence of Function Calls

 Example: call procA, call procC (or bl procA, bl procC)

… …
call procA bl procA
call procB bl procB
… …

procA: procA:
… …
call procC bl procC
… …

© 2023 Software Diagnostics Services

ADDR: Local Variable

 A variable is a memory cell with an address

 A variable with stack region storage

 Usually, a local variable memory cell is referenced by stack pointer

or frame pointer registers

© 2023 Software Diagnostics Services

ADDR: Static Variable

 A variable is a memory cell with an address

 A variable with non-stack and non-register storage

 Usually, there is a direct memory reference

© 2023 Software Diagnostics Services

ADDR: Pointer Dereference

 A pointer is a memory cell that contains the address of (references)

another memory cell

 Dereference is a sequence of instructions to get a value from a

memory cell referenced by another memory cell

© 2023 Software Diagnostics Services

Exercise R3

 Goal: Learn a function structure and associated memory

operations

 ADDR Patterns: Function Prologue, Function Epilogue,

Variable Initialization, Memory Copy

 Memory Cell Diagrams: Function Prologue, Function Epilogue

 \ADDR-Linux\Exercise-R3-x64-GDB.pdf

 \ADDR-Linux\MCD-R3-x64.xlsx

 \ADDR-Linux\Exercise-R3-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R3-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Function Prologue

 The code emitted by a compiler that is necessary to set up the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: allocating memory on the stack for all local variables

© 2023 Software Diagnostics Services

ADDR: Function Epilogue

 The code emitted by a compiler that is necessary to finish the

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: deallocating memory on the stack for all local variables

© 2023 Software Diagnostics Services

ADDR: Variable Initialization

 Code to initialize an individual local variable

 Not part of a function prologue

© 2023 Software Diagnostics Services

ADDR: Memory Copy

 Repeated memory move instructions

© 2023 Software Diagnostics Services

Exercise R4

 Goal: Learn how to recognize call and function parameters and

track their data flow

 ADDR Patterns: Call Prologue, Call Parameter, Call Epilogue,

Call Result, Control Path, Function Parameter

 \ADDR-Linux\Exercise-R4-x64-GDB.pdf

 \ADDR-Linux\Exercise-R4-ARM64-GDB.pdf

© 2023 Software Diagnostics Services

ADDR: Call Prologue

 The code emitted by a compiler that is necessary to set up a

function call (or branch and link) and its parameters

© 2023 Software Diagnostics Services

ADDR: Call Parameter

 Data passed to a function before a function call (or branch and link)

© 2023 Software Diagnostics Services

ADDR: Call Epilogue

 The code emitted by a compiler to finish a function call (or branch

and link) and processing of its return results

© 2023 Software Diagnostics Services

ADDR: Call Result

 Data returned by a function

© 2023 Software Diagnostics Services

ADDR: Control Path

 A possible execution path inside a function consisting of direct and

conditional jumps or branches

© 2023 Software Diagnostics Services

ADDR: Function Parameter

 Data passed to a function inside a function (on the receiver side)

 Such a parameter can be translated to a local variable if passed by

stack or copied to a stack location

© 2023 Software Diagnostics Services

Exercise R5

 Goal: Master memory cell diagrams as an aid to understanding

complex disassembly logic

 ADDR Patterns: Last Call, Loop, Memory Copy

 Memory Cell Diagrams: Memory Copy

 \ADDR-Linux\Exercise-R5-x64-GDB.pdf

 \ADDR-Linux\MCD-R5-x64.xlsx

 \ADDR-Linux\Exercise-R5-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R5-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Last Call

 A function possibly called (or branched and linked to) before the

current instruction pointer

© 2023 Software Diagnostics Services

ADDR: Loop

 An unconditional jump or branch to the previous code address

© 2023 Software Diagnostics Services

Exercise R6

 Goal: Learn how to map code to execution residue and reconstruct

past behaviour; recognise previously introduced ADDR patterns in

the context of compiled classic C++ code

 ADDR Patterns: Virtual Call

 Memory Cell Diagrams: Virtual Call

 \ADDR-Linux\Exercise-R6-x64-GDB.pdf

 \ADDR-Linux\MCD-R6-x64.xlsx

 \ADDR-Linux\Exercise-R6-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R6-ARM64.xlsx

© 2023 Software Diagnostics Services

ADDR: Virtual Call

 A call (or branch and link) through virtual function table structure field

 Usually involves a double Pointer Dereference

© 2023 Software Diagnostics Services

Additional ADDR Patterns

© 2023 Software Diagnostics Services

ADDR: Potential Functionality

 A list of function symbols, for example, a list of imported functions, a

list of callbacks, a structure or table with function pointers

© 2023 Software Diagnostics Services

ADDR: Structure Field

 An offset to the structure memory address

© 2023 Software Diagnostics Services

ADDR: Separator Frames

 Frames that divide a stack trace into separate analysis units

© 2023 Software Diagnostics Services

Live Debugging Techniques

 ADDR Patterns: Component Dependencies, API Trace, Fiber

Bundle (trace analysis pattern)

 Some dependencies can be learnt from crash dump stack traces

 Debugging.TV / YouTube

 Live debugging training: Accelerated Linux Debugging4

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
http://www.debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.patterndiagnostics.com/accelerated-linux-debugging-4d

Memory Analysis Patterns

Regular Data

Injected Symbols

Execution Residue

Rough Stack Trace

Annotated Disassembly

Historical Information

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/blog/index.php/2015/12/19/crash-dump-analysis-patterns-part-60-linux/

Resources
 DumpAnalysis.org / SoftwareDiagnostics.Institute

 PatternDiagnostics.com

 Debugging.TV / YouTube.com/DebuggingTV / YouTube.com/PatternDiagnostics

 A64 Instruction Set Architecture

 A64 Base Instructions

 GDB Pocket Reference

 Accelerated Linux Core Dump Analysis, Third Edition

 Debugging, Disassembly & Reversing in Linux for x64 Architecture

 Foundations of Linux Debugging, Disassembling, and Reversing

 Foundations of ARM64 Linux Debugging, Disassembling, and Reversing

 Memory Dump Analysis Anthology (Diagnomicon) articles in volumes 1, 7, 9A cover GDB

© 2023 Software Diagnostics Services

https://www.dumpanalysis.org/
http://softwarediagnostics.institute/
https://www.patterndiagnostics.com/
http://debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.youtube.com/PatternDiagnostics
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions?lang=en
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.educative.io/courses/debugging-disassembly-reversing-in-linux-x64-architecture
https://www.patterndiagnostics.com/practical-foundations-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-arm64-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/mdaa-volumes

Q&A

Please send your feedback using the contact

form on PatternDiagnostics.com

© 2023 Software Diagnostics Services

https://www.patterndiagnostics.com/

Thank you for attendance!

© 2023 Software Diagnostics Services

	Slide 1: Accelerated
	Slide 2: Prerequisites
	Slide 3: Audience
	Slide 4: Pattern-Oriented RDR
	Slide 5: Training Goals
	Slide 6: Training Principles
	Slide 7: Course Idea
	Slide 8: Part 1: Theory
	Slide 9: Computation
	Slide 10: Disassembly
	Slide 11: The Problem of Reversing
	Slide 12: The Solution to Reversing
	Slide 13: The Reversing Tool
	Slide 14: Re(De)construction
	Slide 15: ADDR Patterns
	Slide 16: ADDR Patterns (II)
	Slide 17: ADDR Schemas
	Slide 18: ADDR Implementations
	Slide 19: Pattern Catalogues
	Slide 20: Pattern Orientation
	Slide 21: Part 2: x64 Disassembly
	Slide 22: CPU Registers (x64)
	Slide 23: Instructions: registers (x64)
	Slide 24: Memory and Stack Addressing
	Slide 25: Instructions: memory load (x64)
	Slide 26: Instructions: memory store (x64)
	Slide 27: Instructions: flow (x64)
	Slide 28: Function Call and Prolog (x64)
	Slide 29: Function Epilog and Return (x64)
	Slide 30: Stack Trace Reconstruction (x64)
	Slide 31: Part 3: A64 Disassembly
	Slide 32: CPU Registers (A64)
	Slide 33: Instructions: registers (A64)
	Slide 34: Memory and Stack Addressing
	Slide 35: Instructions: memory load (A64)
	Slide 36: Instructions: memory store (A64)
	Slide 37: Instructions: flow (A64)
	Slide 38: Function Call and Prolog (A64)
	Slide 39: Function Epilog and Return (A64)
	Slide 40: Function Call and Prolog (A64)
	Slide 41: Function Epilog and Return (A64)
	Slide 42: Stack Trace Reconstruction (A64)
	Slide 43: Part 4: Practice Exercises
	Slide 44: Links
	Slide 45: Exercise R0
	Slide 46: Exercise R1
	Slide 47: Stack Reconstruction (x64)
	Slide 48: Stack Reconstruction (A64)
	Slide 49: ADDR: Universal Pointer
	Slide 50: ADDR: Symbolic Pointer, S2
	Slide 51: ADDR: Interpreted Pointer, S3
	Slide 52: ADDR: Context Pyramid
	Slide 53: Exercise R2
	Slide 54: ADDR: Function Skeleton
	Slide 55: ADDR: Function Call
	Slide 56: ADDR: Call Path
	Slide 57: ADDR: Local Variable
	Slide 58: ADDR: Static Variable
	Slide 59: ADDR: Pointer Dereference
	Slide 60: Exercise R3
	Slide 61: ADDR: Function Prologue
	Slide 62: ADDR: Function Epilogue
	Slide 63: ADDR: Variable Initialization
	Slide 64: ADDR: Memory Copy
	Slide 65: Exercise R4
	Slide 66: ADDR: Call Prologue
	Slide 67: ADDR: Call Parameter
	Slide 68: ADDR: Call Epilogue
	Slide 69: ADDR: Call Result
	Slide 70: ADDR: Control Path
	Slide 71: ADDR: Function Parameter
	Slide 72: Exercise R5
	Slide 73: ADDR: Last Call
	Slide 74: ADDR: Loop
	Slide 75: Exercise R6
	Slide 76: ADDR: Virtual Call
	Slide 77: Additional ADDR Patterns
	Slide 78: ADDR: Potential Functionality
	Slide 79: ADDR: Structure Field
	Slide 80: ADDR: Separator Frames
	Slide 81: Live Debugging Techniques
	Slide 82: Memory Analysis Patterns
	Slide 83: Resources
	Slide 84: Q&A
	Slide 85

