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Prerequisites

 Working C or classic C++ knowledge

 Basic assembly language knowledge
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Audience

 Novices 

Improve x64 (x86_64, AMD64) and A64 (AArch64, ARM64) 

assembly language knowledge

 Experts

Learn the new pattern language approach
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Pattern-Oriented RDR

 Complex crashes and hangs (victimware

analysis)

 Malware analysis

 Studying new products
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https://www.patterndiagnostics.com/files/Victimware.pdf


Training Goals

 Review fundamentals

 Learn patterns and techniques
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Training Principles

 Talk only about what I can show

 Lots of pictures

 Lots of examples

 Original content and examples
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Course Idea

 Accelerated Linux Core Dump Analysis, 

Third Edition (x64 and A64)

 Accelerated Disassembly, Reconstruction 

and Reversing, Second Edition, Revised and 

Extended (Windows x64)
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https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book
https://www.patterndiagnostics.com/accelerated-disassembly-reconstruction-reversing-book


Part 1: Theory
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Computation

CPU

Data Code

Memory Changes

© 2023 Software Diagnostics Services



Disassembly

Data/Code numbers

Data/Code symbolic

48 8d 05 a1 b4 07 00 lea    0x7b4a1(%rip),%rax        # 0x47d004
48 89 05 36 68 0a 00 mov    %rax,0xa6836(%rip)        # 0x4a83a0 <name>

e0 53 00 91    add    x0, sp, #0x14
e0 0f 00 f9 str    x0, [sp, #24]

Annotated Disassembly memory analysis pattern
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http://www.dumpanalysis.org/blog/index.php/2011/10/13/crash-dump-analysis-patterns-part-151/


The Problem of Reversing

 Compilation to Machine LanguageM

Language1 LanguageM Language2

 Decompilation

LanguageM ?

© 2023 Software Diagnostics Services



The Solution to Reversing

 Memory LanguageM Semantics

Language1 LanguageM Language2

 Decompilation

Understanding of LanguageM
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The Reversing Tool

RSP
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Memory Cell Diagrams
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Idea when reading The Mathematical Structure of Classical and Relativistic Physics: A General Classification Diagram book



Re(De)construction

 Time dimension: sequence diagrams

 Space dimension: component diagrams

How does it work temporally and structurally?
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ADDR Patterns

 Accelerated

 Disassembly patterns

 De(Re)construction patterns

 Reversing patterns
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ADDR Patterns (II)

 Accelerated

 Disassembly patterns

 Decompilation patterns

 Reconstruction patterns

© 2023 Software Diagnostics Services



ADDR Schemas

 Function Prologue → Function Epilogue

 Call Prologue → Function Call → Call Epilogue

 Potential Functionality → Call Skeleton → Call Path

 Call Parameter → Function Parameter → Local Variable
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ADDR Implementations

ADDR Pattern Catalogue

Linux macOS Windows

x86 x64 ARM

…
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A64

GCC Clang



Pattern Catalogues

 Elementary Software Diagnostics Patterns

 Memory Analysis Patterns

 Trace and Log Analysis Patterns

 Unified Debugging Patterns

 ADDR Patterns
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https://www.dumpanalysis.org/elementary-diagnostics-patterns
http://www.patterndiagnostics.com/encyclopedia-crash-dump-analysis-patterns
http://www.patterndiagnostics.com/trace-log-analysis-pattern-reference
https://www.dumpanalysis.org/pattern-oriented-debugging-process


Pattern Orientation

 Pattern-Driven ADDR

 Pattern-Based ADDR
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Part 2: x64 Disassembly
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CPU Registers (x64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-x64.xlsx

 RAX  EAX  AX  {AH, AL}

 ALU: RAX, RDX

 Counter: RCX

 Memory copy: RSI (src), RDI (dst)

 Stack: RSP, RBP

 Next instruction: RIP

 New: R8 – R15, Rx(D|W|L)  
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RAX 64-bit EAX 32-bit



Instructions: registers (x64)

 Opcode SRC, DST # default AT&T flavour

 Examples:

mov $0x10, %rax # 0x10 → RAX

mov   %rsp, %rbp # RSP → RBP

add   $0x10, %r10 # R10 + 0x10 → R10 

imul  %ecx, %edx # ECX * EDX → EDX

callq *%rdx # RDX already contains 

# the address of func (&func)

# PUSH RIP; &func → RIP  

sub $0x30, %rsp # RSP–0x30 → RSP

# make a room for local variables
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Memory and Stack Addressing
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RSP      →

RSP-0x8  →

RSP-0x18 →

RSP+0x8  →

RSP-0x20 →

RSP-0x10 →
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← RBP+0x10
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Instructions: memory load (x64)

 Opcode Offset(SRC), DST

 Opcode DST

 Examples:

mov 0x10(%rsp), %rax       # value at address RSP+0x10 → RAX

mov -0x10(%rbp), %rcx # value at address RBP-0x10 → RCX

add (%rax), %rdx # RDX + value at address RAX → RDX

pop %rdi                   # value at address RSP → RDI

# RSP + 8 → RSP

lea 0x20(%rbp), %r8        # address RBP+0x20 → R8
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Instructions: memory store (x64)

 Opcode SRC, Offset(DST)

 Opcode SRC|DST

 Examples:

mov %rcx, -0x20(%rbp) # RCX → value at address RBP-0x20 

addl $1, (%rax)             # 1 + 32-bit value at address RAX → 

#     32-bit value at address RAX

push %rsi # RSP - 8 → RSP 

# RSI → value at address RSP

inc   (%rcx)                 # 1 + value at address RCX → 

#     value at address RCX 
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Instructions: flow (x64)

 Opcode DST

 Examples:

jmp 0x10493fc1c      # 0x10493fc1c → RIP

# (goto 0x10493fc1c) 

call   0x10493ff74      # RSP – 8 → RSP

0x10493fc14:            # 0x10493fc14 → value at address RSP

# 0x10493ff74 → RIP

# (goto 0x10493ff74)

© 2023 Software Diagnostics Services



Function Call and Prolog (x64)
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# void proc(int p1, long p2);
mov  $0x1, %edi 
mov  $0x2, %rsi 
call proc
addr: 

# void proc2();
# void proc(int p1, long p2) {
# long local = 0;
# proc2();    
# }
proc:
push %rbp
mov  %rsp, %rbp 
sub  $0x8, %rsp
mov  $0, -0x8(%rbp)
call proc2
adr2:
...        

adr2

0

RBP

addrRSP      →

RSP-0x8  →

RSP →

RSP+0x8  →

RSP-0x20 →

RSP-0x10 →

RSP+0x10 →

RSP+0x18 →

RSP+0x20 →

← RBP-0x8

← RBP

← RBP-0x20

← RBP

← RBP-0x28

← RBP-0x8

← RBP+0x8

← RBP+0x10

← RBP+0x18
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Function Epilog and Return (x64)
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# void proc2();
# void proc(int p1, long p2) {
# long local = 0;
# proc2();    
# }
proc:
push %rbp
mov  %rsp, %rbp 
sub  $0x8, %rsp
mov  $0, -0x8(%rbp)
call proc2
adr2:
...
leaveq # GCC
retq

adr2:
...
add  $0x8, %rsp # Clang
pop  $rbp
retq

adr2

0

RBP

addrRSP+0x10 →

RSP+0x8  →

RSP-0x8  →

RSP →

RSP-0x10 →

RSP      →

RSP+0x20 →

RSP+0x28 →

RSP+0x30 →

← RBP+0x8

← RBP

← RBP-0x18

← RBP

← RBP-0x20

← RBP-0x8

← RBP+0x18

← RBP+0x20

← RBP+0x28
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Stack Trace Reconstruction (x64)
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RBP

foo

RBP

bar

RBP

main

return address foo + 200

← RBP 

S
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Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

RIP == func + 16     



Part 3: A64 Disassembly

© 2023 Software Diagnostics Services



CPU Registers (A64)

Illustrated in memory cell diagrams: \ADDR-Linux\MCD-R1-ARM64.xlsx

 X0 – X28, W0 – W28

 Stack: SP, X29 (FP)

 Next instruction: PC

 Link register: X30 (LR)

 Zero register: XZR, WZR

 64-bit floating point registers D0 – D31

 128-bit Q0 – Q31
© 2023 Software Diagnostics Services

X 64-bit W 32-bit



Instructions: registers (A64)

 Opcode DST, SRC, SRC2

 Examples:

mov x0, #16                // X0 ← 16 (0x10)

mov x29, sp // X29 ← SP

add   x1, x2, #16 // X1 ← X2+16 (0x10)

mul   x1, x2, x3 // X1 ← X2*X3

blr   x8 // X8 already contains 

// the address of func (&func)

// LR ← PC+4; PC ← &func  

sub sp, sp, #48 // SP ← SP-48 (–0x30) 

// make a room for local variables
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Memory and Stack Addressing
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SP      →

SP-0x8  →

SP-0x18 →

SP+0x8  →

SP-0x20 →

SP-0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29-0x20

← X29-0x10

← X29+0x10

← X29+0x18

← X29+0x20

S
t
a
c
k
 
g
r
o
w
s

Higher addresses

Lower addresses



Instructions: memory load (A64)

 Opcode DST, DST2, [SRC, Offset]

 Opcode DST, DST2, [SRC], Offset // Postincrement

 Examples:

ldr x0, [sp]               // X0 ← value at address SP+0

ldr x0, [x29, #-8]         // X0 ← value at address X29-0x8

ldp x29, x30, [sp, #32]    // X29 ← value at address SP+32 (0x20)

// X30 ← value at address SP+40 (0x28)

ldp x29, x30, [sp], #16 // X29 ← value at address SP+0

// X30 ← value at address SP+8

// SP ← SP+16 (0x10)
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Instructions: memory store (A64)

 Opcode SRC, SRC2, [DST, Offset]

 Opcode SRC, SRC2, [DST, Offset]! // Preincrement

 Examples:

str x0, [sp, #16] // x0 → value at address SP+16 (0x10)

str x0, [x29, #-8] // x0 → value at address X29-8

stp x29, x30, [sp, #32] // x29 → value at address SP+32 (0x20)

// x30 → value at address SP+40 (0x28) 

stp x29, x30, [sp, #-16]! // SP ← SP-16 (-0x10)

// x29 → set value at address SP

// x30 → set value at address SP+8
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Instructions: flow (A64)

 Opcode DST, SRC

 Examples:

adrp  x0, 0x420000 // x0 ← 0x420000

b 0x10493fc1c       // PC ← 0x10493fc1c

// (goto 0x10493fc1c)

br x17               // PC ← the value of X17

0x10493fc14:            // PC == 0x10493fc14

bl    0x10493ff74       // LR ← PC+4 (0x10493fc18)

// PC ← 0x10493ff74

// (goto 0x10493ff74)
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Function Call and Prolog (A64)
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X29

X30

0
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Higher addresses

Lower addresses

// void proc(int p1, long p2);
mov  w0, #0x1
mov  x1, #0x2 
bl   proc
addr:

// void proc2();
// void proc(int p1, long p2) {
//   long local = 0;
//   proc2();    
// }
proc:
stp  x29, x30, [sp, #-32]!
mov  x29, sp
str  zxr, [x29, #16]
bl   proc2
adr2:
...        

GCC

← X29

← X29-0x8

← X29-0x18

← X29+0x8

← X29

← X29+16

← X29+0x10

← X29+0x18

← X29+0x20

SP      →

SP-0x8  →

SP-0x18 →

SP+0x8  →

SP      →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

adr2X30



Function Epilog and Return (A64)
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// void proc(int p1, long p2);
mov  w0, #0x1
mov  x1, #0x2 
bl   proc
addr:

// void proc2();
// void proc(int p1, long p2) {
//   long local = 0;
//   proc2();    
// }
proc:
stp  x29, x30, [sp, #-32]!
mov  x29, sp
str  zxr, [x29, #16]
bl   proc2
adr2:
...
ldp     x29, x30, [sp], #32
ret

GCC

X29

X30
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Higher addresses

Lower addresses

← X29

← X29+0x18

← X29+0x8

← X29+0x28

← X29

← X29+0x10

← X29+0x30

← X29+0x38

← X29+0x40

SP →

SP+0x18 →

SP+0x8  →

SP+0x28 →

SP      →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

addrX30



Function Call and Prolog (A64)
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0

X29

X30

SP      →

SP-0x8  →

SP-0x18 →

SP+0x8  →

SP      →

SP+0x10 →

SP+0x10 →

SP+0x18 →

SP+0x20 →

← X29

← X29-0x8

← X29-0x8

← X29+0x8

← X29-0x20

← X29

← X29+0x10

← X29+0x18

← X29+0x20
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Lower addresses

// void proc(int p1, long p2);
mov  w0, #0x1
mov  x1, #0x2 
bl   proc
addr:

// void proc2();
// void proc(int p1, long p2) {
//   long local = 0;
//   proc2();    
// }
proc:
sub  sp, sp, #0x20
stp  x29, x30, [sp, #16]
add  x29, sp, #0x10
str  zxr, [x29, #-8]
bl   proc2
adr2:
...        

Clang
adr2X30



Function Epilog and Return (A64)
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// void proc(int p1, long p2);
mov  w0, #0x1
mov  x1, #0x2 
bl   proc
addr:

// void proc2();
// void proc(int p1, long p2) {
//   long local = 0;
//   proc2();    
// }
proc:
sub  sp, sp, #0x20
stp  x29, x30, [sp, #16]
add  x29, sp, #0x10
str  zxr, [x29, #-8]
bl   proc2
adr2:
...
ldp     x29, x30, [sp, #16]
add     sp, sp, #0x20
ret

Clang
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Higher addresses

Lower addresses

0

X29

X30

SP →      
→

SP+0x18 →

SP+0x8  →

SP+0x28 →

SP      →

SP+0x10 →

SP+0x30 →

SP+0x38 →

SP+0x40 →

← X29

← X29+0x8

← X29-0x8

← X29+0x18

← X29-0x10

← X29

← X29+0x20

← X29+0x28

← X29+0x30

addrX30



Stack Trace Reconstruction (A64)
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X29

X30

X29

X30

X29

X30

return address foo + 200

← X29 
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Higher addresses

Lower addresses

return address bar + 80

return address main + 300

(gdb) bt
func + 16
foo + 200
bar + 80
main + 300

PC == func + 16,
LR == return address foo + 200



Part 4: Practice Exercises
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Links

 Memory dumps:

Download links are in the exercise R0.

 Exercise Transcripts:

Included in this book. 
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Exercise R0

 Goal: Install GDB and check if GDB loads a core dump correctly

 \ADDR-Linux\Exercise-R0-x64-GDB.pdf

 \ADDR-Linux\Exercise-R0-ARM64-GDB.pdf
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Exercise R1

 Goal: Review x64 and AArch64 assembly fundamentals; learn how 

to reconstruct stack trace manually

 ADDR Patterns: Universal Pointer, Symbolic Pointer S2, 

Interpreted Pointer S3, Context Pyramid

 Memory Cell Diagrams: Register, Pointer, Stack Frame

 \ADDR-Linux\Exercise-R1-x64-GDB.pdf

 \ADDR-Linux\MCD-R1-x64.xlsx

 \ADDR-Linux\Exercise-R1-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R1-ARM64.xlsx
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Stack Reconstruction (x64)

1. Top frame from the current RIP1, RSP1 (info reg)

2. Disassemble around the current RIPn (disass RIPn)*

3. Find out the beginning of the function prologue*

4. Check RSPn usage (sub, push) and count offsets

5. Get RIPn+1 for the next frame (x/a RSPn + offset)

6. Get RSPn+1 for the next frame (RSPn + offset + 8)

7. ++n

8. goto #2

* If symbols are available, disassemble the function corresponding to RIPn (disass name) 

If symbols are not available, disassemble backwards until the function prologue is found
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Stack Reconstruction (A64)

1. Top frame from the current PC1, X291 (info reg)

2. Get PCn+1 for the next frame (x/a X29n + 8)

3. Get X29n+1 for the next frame (x/gx X29n)

4. ++n

5. goto #2

© 2023 Software Diagnostics Services



ADDR: Universal Pointer

 A memory cell value interpreted as a pointer to memory cells 

 A memory address that was not specifically designed as a pointer
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ADDR: Symbolic Pointer, S2

 A memory cell value associated with a symbolic value from a 

symbol file or a binary file (exported symbol)
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ADDR: Interpreted Pointer, S3

 Interpretation of a memory cell pointer value and its symbol

 Implemented via a typed structure or debugger (extension) 

command
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ADDR: Context Pyramid

 When we move down stack trace frames, we can recover less and 

less contextual memory information due to register and memory 

overwrites
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Exercise R2

 Goal: Learn how to map source code to disassembly

 ADDR Patterns: Function Skeleton, Function Call, Call Path, 

Local Variable, Static Variable, Pointer Dereference

 Memory Cell Diagrams: Pointer Dereference

 \ADDR-Linux\Exercise-R2-x64-GDB.pdf

 \ADDR-Linux\MCD-R2-x64.xlsx

 \ADDR-Linux\Exercise-R2-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R2-ARM64.xlsx
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ADDR: Function Skeleton

 Function calls (or branch and links) inside a function body

 Splits a function body into regions

 Helps in understanding a function
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ADDR: Function Call

 Simply the call of (or branch and link to) a function

 Call (bl, blr) or unconditional jmp (b) instructions
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ADDR: Call Path

 Following a sequence of Function Calls

 Example: call procA, call procC (or bl procA, bl procC)

… …
call procA bl procA 
call procB bl procB 
… …

procA: procA:
… … 
call procC bl procC
… …
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ADDR: Local Variable

 A variable is a memory cell with an address

 A variable with stack region storage

 Usually, a local variable memory cell is referenced by stack pointer 

or frame pointer registers 
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ADDR: Static Variable

 A variable is a memory cell with an address

 A variable with non-stack and non-register storage 

 Usually, there is a direct memory reference
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ADDR: Pointer Dereference

 A pointer is a memory cell that contains the address of (references) 

another memory cell

 Dereference is a sequence of instructions to get a value from a 

memory cell referenced by another memory cell

© 2023 Software Diagnostics Services



Exercise R3

 Goal: Learn a function structure and associated memory 

operations

 ADDR Patterns: Function Prologue, Function Epilogue, 

Variable Initialization, Memory Copy

 Memory Cell Diagrams: Function Prologue, Function Epilogue

 \ADDR-Linux\Exercise-R3-x64-GDB.pdf

 \ADDR-Linux\MCD-R3-x64.xlsx

 \ADDR-Linux\Exercise-R3-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R3-ARM64.xlsx
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ADDR: Function Prologue

 The code emitted by a compiler that is necessary to set up the 

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: allocating memory on the stack for all local variables 
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ADDR: Function Epilogue

 The code emitted by a compiler that is necessary to finish the 

working internals of a function

 Such code doesn’t have a real counterpart in actual source code

 Example: deallocating memory on the stack for all local variables
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ADDR: Variable Initialization

 Code to initialize an individual local variable

 Not part of a function prologue
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ADDR: Memory Copy

 Repeated memory move instructions
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Exercise R4

 Goal: Learn how to recognize call and function parameters and 

track their data flow

 ADDR Patterns: Call Prologue, Call Parameter, Call Epilogue, 

Call Result, Control Path, Function Parameter

 \ADDR-Linux\Exercise-R4-x64-GDB.pdf

 \ADDR-Linux\Exercise-R4-ARM64-GDB.pdf
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ADDR: Call Prologue

 The code emitted by a compiler that is necessary to set up a 

function call (or branch and link) and its parameters
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ADDR: Call Parameter

 Data passed to a function before a function call (or branch and link)
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ADDR: Call Epilogue

 The code emitted by a compiler to finish a function call (or branch 

and link) and processing of its return results
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ADDR: Call Result

 Data returned by a function
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ADDR: Control Path

 A possible execution path inside a function consisting of direct and 

conditional jumps or branches
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ADDR: Function Parameter

 Data passed to a function inside a function (on the receiver side) 

 Such a parameter can be translated to a local variable if passed by 

stack or copied to a stack location
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Exercise R5

 Goal: Master memory cell diagrams as an aid to understanding 

complex disassembly logic 

 ADDR Patterns: Last Call, Loop, Memory Copy

 Memory Cell Diagrams: Memory Copy

 \ADDR-Linux\Exercise-R5-x64-GDB.pdf

 \ADDR-Linux\MCD-R5-x64.xlsx

 \ADDR-Linux\Exercise-R5-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R5-ARM64.xlsx
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ADDR: Last Call

 A function possibly called (or branched and linked to) before the 

current instruction pointer
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ADDR: Loop

 An unconditional jump or branch to the previous code address
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Exercise R6

 Goal: Learn how to map code to execution residue and reconstruct 

past behaviour; recognise previously introduced ADDR patterns in 

the context of compiled classic C++ code

 ADDR Patterns: Virtual Call

 Memory Cell Diagrams: Virtual Call

 \ADDR-Linux\Exercise-R6-x64-GDB.pdf

 \ADDR-Linux\MCD-R6-x64.xlsx

 \ADDR-Linux\Exercise-R6-ARM64-GDB.pdf

 \ADDR-Linux\MCD-R6-ARM64.xlsx
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ADDR: Virtual Call

 A call (or branch and link) through virtual function table structure field 

 Usually involves a double Pointer Dereference

© 2023 Software Diagnostics Services



Additional ADDR Patterns
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ADDR: Potential Functionality

 A list of function symbols, for example, a list of imported functions, a 

list of callbacks, a structure or table with function pointers  
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ADDR: Structure Field

 An offset to the structure memory address
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ADDR: Separator Frames

 Frames that divide a stack trace into separate analysis units

© 2023 Software Diagnostics Services



Live Debugging Techniques

 ADDR Patterns: Component Dependencies, API Trace, Fiber 

Bundle (trace analysis pattern)

 Some dependencies can be learnt from crash dump stack traces

 Debugging.TV / YouTube

 Live debugging training: Accelerated Linux Debugging4
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https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
https://www.dumpanalysis.org/blog/index.php/2012/09/26/trace-analysis-patterns-part-52/
http://www.debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.patterndiagnostics.com/accelerated-linux-debugging-4d


Memory Analysis Patterns

Regular Data

Injected Symbols

Execution Residue

Rough Stack Trace

Annotated Disassembly

Historical Information
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https://www.dumpanalysis.org/blog/index.php/2015/12/19/crash-dump-analysis-patterns-part-60-linux/


Resources
 DumpAnalysis.org / SoftwareDiagnostics.Institute

 PatternDiagnostics.com

 Debugging.TV / YouTube.com/DebuggingTV / YouTube.com/PatternDiagnostics

 A64 Instruction Set Architecture

 A64 Base Instructions

 GDB Pocket Reference

 Accelerated Linux Core Dump Analysis, Third Edition

 Debugging, Disassembly & Reversing in Linux for x64 Architecture

 Foundations of Linux Debugging, Disassembling, and Reversing

 Foundations of ARM64 Linux Debugging, Disassembling, and Reversing

 Memory Dump Analysis Anthology (Diagnomicon) articles in volumes 1, 7, 9A cover GDB
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https://www.dumpanalysis.org/
http://softwarediagnostics.institute/
https://www.patterndiagnostics.com/
http://debugging.tv/
https://www.youtube.com/DebuggingTV
https://www.youtube.com/PatternDiagnostics
https://developer.arm.com/documentation/102374/latest/
https://developer.arm.com/documentation/ddi0596/2021-12/Base-Instructions?lang=en
https://www.patterndiagnostics.com/accelerated-linux-core-dump-analysis-book
https://www.educative.io/courses/debugging-disassembly-reversing-in-linux-x64-architecture
https://www.patterndiagnostics.com/practical-foundations-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/practical-foundations-arm64-linux-debugging-disassembling-reversing
https://www.patterndiagnostics.com/mdaa-volumes


Q&A

Please send your feedback using the contact 

form on PatternDiagnostics.com 
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Thank you for attendance!
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